On a Generalized R^h – Birecurrent Finsler Space

¹Fahmi Y.A. Qasem, ²Wafa`a H.A. Hadi

¹Department of Mathematics , Faculty of Education-Aden, University of Aden, Khormaksar , Aden, Yemen ²Department of Mathematics , Community College, Dar Saad , Aden, Yemen

Abstract: In the present paper, a Finsler space whose curvature tensor R_{jkh}^i satisfies $R_{jkh|\ell|m}^i = a_{\ell m}R_{jkh}^i + b_{\ell m}(\delta_k^i g_{jh} - \delta_h^i g_{jk})$, $R_{jkh}^i \neq 0$, where $a_{\ell m}$ and $b_{\ell m}$ are non-zero covariant tensor fields of second order called recurrence tensor fields, is introduced, such space is called as a generalized R^h -birecurrent Finsler space. The associate tensor R_{jrkh} of Cartan's third curvature tensor R_{jkh}^i , the torsion tensor H_{kh}^i , the deviation tensor R_h^i , the Ricci tensor R_{jk} , the vector H_k and the scalar curvature R of such space are non-vanishing. Under certain conditions, a generalized R^h -birecurrent Finsler space becomes Landsberg space. Some conditions have been pointed out which reduce a generalized R^h -birecurrent Finsler space of scalar curvature.

Keywords: Finsler space; Generalized R^h –birecurrent Finsler space; Ricci tensor; Landsberg space; Finsler space of scalar curvature.

1. INTRODUCTION

H.S. Ruse [4] considered a three dimensional Riemannian space having the recurrent of curvature tensor and he called such space as *Riemannian space of recurrent curvature*. This idea was extended to n-dimensional Riemannian and non-Riemannian space by A.G. Walker [1],Y.C. Worg [9],Y.C. Worg and K. Yano [10] and others .

This idea was extended to Finsler spaces by A.Moor [2] for the first time . Due to different connections of Finsler space, the recurrent of Cartan's third curvature tensor R_{jkh}^i have been discussed by, R.Verma [7], birecurrent of Cartan's third curvature tensor R_{jkh}^i have been discussed by S.Dikshit [8] and the generalized birecurrent of Cartan's third curvature tensor R_{jkh}^i have been discussed by F.Y.A.Qasem [3].P.N.Pandey, S.Saxena and A.Goswami [6] interduced a generalized *H*-recurrent Finsler space.

Let F_n be An *n*-dimensional Finsler space equipped with the metric function a F(x, y) satisfying the request conditions [4].

The vectors y_i , y^i and the metric tensor g_{ij} satisfies the following relations

(1.1)	a)	$y_i y^i = F^2$	b)	$g_{ij} = \partial_i y_j = \partial_j y_i$	c)	$y_{i k} = 0$
	d)	$y_{ k}^{i} = 0$	e)	$g_{ij k} = 0$	f)	$g^{ij}_{ k} = 0$.

Thus the unit vector l^i and the associate vector l_i is defined by

(1.2) a)
$$\lfloor^i = \frac{y^i}{F}$$
 b) $\lfloor_i = g_{ij} \rfloor^j = \dot{\partial}_i F = \frac{y_i}{F}$

The two processes of covariant differentiation, defined above commute with the partial

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 3, Issue 2, pp: (93-99), Month: October 2015 - March 2016, Available at: www.researchpublish.com

(1.3)

a)
$$\dot{\partial}_j (X^i_{|k}) - (\dot{\partial}_j X^i)_{|k} = X^r (\dot{\partial}_j \Gamma^*_{rk}) - (\dot{\partial}_r X^i) P^r_{jk}$$

b)
$$P_{jk}^{r} = (\dot{\partial}_{j}\Gamma_{hk}^{*r})y^{h} = \Gamma_{jhk}^{*r} y^{h},$$

c)
$$\Gamma_{jkh}^{*i} y^{h} = G_{jkh}^{i} y^{h} = 0,$$

d)
$$P_{jk}^{i} y^{j} = 0,$$

e)
$$g_{ir} P_{kh}^{i} = P_{rkh}.$$

The tensor H_{jkh}^i satisfies the relation

e)

(1.4)
$$H_{jkh}^{i} y^{j} = H_{kh}^{i}$$
.

(1.5)
$$H_{jkh}^{i} = \dot{\partial}_{j} H_{kh}^{i}.$$

The torsion tensor H_{kh}^{i} satisfies

(1.6)
$$H_{kh}^{i} y^{h} = H_{k}^{i},$$

(1.7)
$$R^{i}_{jkh} y^{j} = H^{i}_{kh},$$

$$(1.8) H_{jk} = H_{jki}^i ,$$

$$(1.9) H_k = H_{ki}^i,$$

and

(1.10)
$$H = \frac{1}{n-1} H_i^i$$
.

where H jk and H are called h-Ricci tensor [5] and curvature scalar respectively. Since contraction of the indices does not affect the homogeneity in y^i , hence the tensors H_{rk} , H_r and the scalar H are also homogeneous of degree zero, one and two in y^i respectively. The above tensors are also connected by

(1.11)
$$H_{jk} y^j = H_k$$
,

$$(1.12) H_{jk} = \dot{\partial}_j H_k ,$$

(1.13)
$$H_k y^k = (n-1)H$$
.

The tensors H_h^i , H_{kh}^i and H_{jkh}^i also satisfy the following :

(1.15)
$$g_{ij} H_k^i = g_{ik} H_j^i$$
.

The associate tensor R_{ijkh} of Catan's third curvature tensor R_{jkh}^{i} is given by

(1.16)
$$R_{ijkh} = g_{rj} R_{ikh}^r$$
.

The necessary and sufficient condition for a Finsler space $F_n(n > 2)$ to be a Finsler space of scalar curvature is given by

(1.17)
$$H_h^i = F^2 R(\delta_h^i - \lfloor^i \rfloor_h).$$

A Finsler space F_n is said to be Landsberg space if satisfies

(1.18)
$$y_r G_{jkh}^r = -2C_{jkh|m} y^m = -2P_{jkh} = 0.$$

The Ricci tensor R_{jk} of the curvature tensor R_{jkh}^{i} , the tensor R_{h}^{r} and the scalar R are given by

a) $R_{iki}^{i} = R_{ik}$, (1.19)b) $R_{ikh}^r g^{ik} = R_h^r$,

$$c) \qquad g^{jk}R_{jk} = R.$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

Vol. 3, Issue 2, pp: (93-99), Month: October 2015 - March 2016, Available at: www.researchpublish.com

2. GENERALIZED R^h – BIRECURRENT FINSLER SPACE

Let us consider a Finsler space F_n whose Cartan's third curvature tensor R_{ikh}^i satisfies

(2.1) $R_{jkh}^i = \lambda_\ell R_{jkh}^i + \mu_\ell (\delta_k^i g_{jh} - \delta_h^i g_{jk}), R_{jkh}^i \neq 0$, where λ_ℓ and μ_ℓ are non-zero covariant vector fields and called the recurrence vector fields. Such space called it as a generalized R^h - recurrent Finsler space.

Differentiating (2.1) covariantly with respect to x^m in the sense of Cartan and using (1.1.e), we get

(2.2)
$$R_{jkh|\ell|m}^{i} = \lambda_{\ell|m} R_{jkh}^{i} + \lambda_{\ell} H_{jkh|m}^{i} + \mu_{\ell|m} (\delta_{k}^{i} g_{jh} - \delta_{h}^{i} g_{jk}).$$

Using (2.1) in (2.2) we get

$$R_{jkh|\ell|m}^{i} = (\lambda_{\ell|m} + \lambda_{\ell} \lambda_{m})R_{jkh}^{i} + (\lambda_{\ell}\mu_{m} + \mu_{\ell|m})(\delta_{k}^{i} g_{jh} - \delta_{h}^{i} g_{jk}),$$

which can be written as

(2.3)
$$R_{jkh|\ell|m}^{i} = a_{\ell m} R_{jkh}^{i} + b_{\ell m} (\delta_{k}^{i} g_{jh} - \delta_{h}^{i} g_{jk}), R_{jkh}^{i} \neq 0,$$

Where $a_{\ell m} = \lambda_{\ell \mid m} + \lambda_{\ell} \lambda_m$ and $b_{\ell m} = \lambda_{\ell} \mu_m + \mu_{\ell \mid m}$ are non-zero covariant tensor fields of second order and called recurrence tensor fields.

Definition 2.1. If Cartan's third curvature tensor R_{jkh}^i of a Finsler space satisfying the condition (2.3), where $a_{\ell m}$ and $b_{\ell m}$ are non-zero covariant tensor fields of second order, the space and the tensor will be called generalized R^h – birecurrent Finsler space, we shall denote such space briefly by $GR^h - BR - F_n$.

However, if we start from condition (2.3), we cannot obtain the condition (2.1), we may conclude

Theorem 2.1. Every generalized R^h – recurrent Finsler space is generalized R^h – birecurrent Finsler space, but the converse need not be true.

Transvecting (2.3) by the metric tensor g_{ir} , using (1.1e) and (1.16), we get

(2.4)
$$R_{jrkh|\ell|m} = a_{\ell m} R_{jrkh} + b_{\ell m} (g_{kr} g_{jh} - g_{hr} g_{jk}).$$

Transvecting (2.3) by y^j , using (1.1d) and (1.7) we get

(2.5)
$$H_{kh|\ell|m}^{i} = a_{\ell m} H_{kh}^{i} + b_{\ell m} \left(\delta_{k}^{i} y_{h} - \delta_{h}^{i} y_{k} \right).$$

Further transvecting (2.5) by y^k , using (1.1d) and (1.6), we get

(2.6)
$$H^{i}_{h|\ell|m} = a_{\ell m} H^{i}_{h} + b_{\ell m} (y^{i} y_{h} - \delta^{i}_{h} F^{2})$$

Thus we have

Theorem 2.2. In $GR^h - BR - F_n$, the associate tensor R_{jrkh} of Cartan's third curvature tensor R_{jkh}^i , the torsion tensor H_{kh}^i and the deviation tensor H_h^i are non-vanishing.

Contracting the indices i and h in equations (2.3), (2.5) and (2.6), using (1.19a), (1.9), (1.10) and (1.1 a), we get

(2.7)
$$R_{jk|\ell|m} = a_{\ell m} R_{jk} + (1-n) b_{\ell m} g_{jk} .$$

(2.8)
$$H_{k|\ell|m} = a_{\ell m} H_k + (1-n) b_{\ell m} y_k .$$

(2.9)
$$H_{|\ell|m} = a_{\ell m} H - b_{\ell m} F^2$$
.

Transvecting (2.3) and (2.7) by g^{jk} , using (1.1f), (1.19b) and (1.19c), we get

(2.10)
$$R_{h|\ell|m}^{i} = a_{\ell m} R_{h}^{i} + b_{\ell m} (y^{i} y_{h} - \delta_{h}^{i}).$$

(2.11)
$$R_{|\ell|m} = a_{\ell m} R + (1-n) b_{\ell m} .$$

Thus, we conclude

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 3, Issue 2, pp: (93-99), Month: October 2015 - March 2016, Available at: <u>www.researchpublish.com</u>

Theorem 2.3. In $GR^h - BR - F_n$, the Ricci tensor R_{jk} , the curvature vector H_k , the scalar curvature H the deviation tensor R_h^i and the scalar curvature tensor R are non-vanishing.

Differentiating (2.5) partially with respect to y^{j} , using (1.5) and (1.1b), we get

(2.12)
$$\dot{\partial}_j \left(H^i_{khl\ell lm} \right) = \left(\dot{\partial}_j a_{\ell m} \right) H^i_{kh} + a_{\ell m} H^i_{jkh} + \left(\dot{\partial}_j b_{\ell m} \right) \left(\delta^i_k y_h - \delta^i_h y_k \right)$$
$$+ b_{\ell m} \left(\delta^i_k g_{jh} - \delta^i_h g_{jk} \right).$$

Using commutation formula exhibited by (1.3b) for $(H_{kh|\ell}^i)$ in (2.12), we get

$$(2.13) \qquad \left\{ \dot{\partial}_{j} \left(H_{kh|\ell}^{i} \right) \right\}_{lm} + H_{kh|\ell}^{r} \left(\dot{\partial}_{j} \Gamma_{rm}^{*i} \right) - H_{rh|\ell}^{i} \left(\dot{\partial}_{j} \Gamma_{km}^{*r} \right) - H_{rk|\ell}^{i} \left(\dot{\partial}_{j} \Gamma_{hm}^{*r} \right) - H_{kh|r}^{r} \left(\dot{\partial}_{j} \Gamma_{m\ell}^{*i} \right) - \dot{\partial}_{r} \left(H_{kh|\ell}^{i} \right) P_{jm}^{r} = \left(\dot{\partial}_{j} a_{\ell m} \right) H_{kh}^{i} + a_{\ell m} H_{jkh}^{i} + \left(\dot{\partial}_{j} b_{\ell m} \right) \left(\delta_{k}^{i} y_{h} - \delta_{h}^{i} y_{k} \right) + b_{\ell m} \left(\delta_{k}^{i} g_{jh} - \delta_{h}^{i} g_{jk} \right).$$

Again applying the commutation formula exhibited by (1.3a) for (H_{kh}^i) in (2.13) and using (1.5), we get

$$(2.14) \qquad \left\{ H^{i}_{jkhl\ell} + H^{r}_{kh} (\dot{\partial}_{j} \Gamma^{*i}_{r\ell}) - H^{i}_{rh} (\dot{\partial}_{j} \Gamma^{*r}_{k\ell}) - H^{i}_{rk} (\dot{\partial}_{j} \Gamma^{*r}_{h\ell}) - H^{i}_{rkh} P^{r}_{j\ell} \right\}_{lm} \\ + H^{r}_{khl\ell} (\dot{\partial}_{j} \Gamma^{*i}_{rm}) - H^{i}_{rhl\ell} (\dot{\partial}_{j} \Gamma^{*r}_{km}) - H^{i}_{rkl\ell} (\dot{\partial}_{j} \Gamma^{*r}_{hm}) - H^{i}_{khlr} (\dot{\partial}_{j} \Gamma^{*r}_{m\ell}) - \\ \left\{ H^{i}_{rkhl\ell} + H^{s}_{kh} (\dot{\partial}_{r} \Gamma^{*i}_{s\ell}) - H^{i}_{sh} (\dot{\partial}_{r} \Gamma^{*s}_{k\ell}) - H^{i}_{sk} (\dot{\partial}_{r} \Gamma^{*s}_{h\ell}) - H^{i}_{skh} P^{s}_{r\ell} \right\} P^{r}_{jm} \\ = (\dot{\partial}_{j} a_{\ell m}) H^{i}_{kh} + a_{\ell m} H^{i}_{jkh} + (\dot{\partial}_{j} b_{\ell m}) (\delta^{i}_{k} y_{h} - \delta^{i}_{h} y_{k}) \\ + b_{\ell m} (\delta^{i}_{k} g_{jh} - \delta^{i}_{h} g_{jk}) .$$

This shows that

(2.15)
$$H^{i}_{jkh|\ell|m} = a_{\ell m} H^{i}_{jkh} + b_{\ell m} (\delta^{i}_{k} g_{jh} - \delta^{i}_{h} g_{jk}).$$

if and only if

$$(2.16) \qquad \left\{ H^{r}_{kh} (\dot{\partial}_{j} \Gamma^{*i}_{r\ell}) - H^{i}_{rh} (\dot{\partial}_{j} \Gamma^{*r}_{k\ell}) - H^{i}_{rk} (\dot{\partial}_{j} \Gamma^{*r}_{h\ell}) - H^{i}_{rkh} P^{r}_{j\ell} \right\}_{lm} \\ + H^{r}_{khl\ell} (\dot{\partial}_{j} \Gamma^{*i}_{rm}) - H^{i}_{rhl\ell} (\dot{\partial}_{j} \Gamma^{*r}_{km}) - H^{i}_{rkl\ell} (\dot{\partial}_{j} \Gamma^{*r}_{hm}) - H^{i}_{khlr} (\dot{\partial}_{j} \Gamma^{*r}_{m\ell}) \\ - \left\{ H^{i}_{rkhl\ell} + H^{s}_{kh} (\dot{\partial}_{r} \Gamma^{*i}_{s\ell}) - H^{i}_{sh} (\dot{\partial}_{r} \Gamma^{*s}_{k\ell}) - H^{i}_{sk} (\dot{\partial}_{r} \Gamma^{*s}_{h\ell}) - H^{i}_{skh} P^{s}_{r\ell} \right\} P^{r}_{jm} \\ = (\dot{\partial}_{j} a_{\ell m}) H^{i}_{kh} + (\dot{\partial}_{j} b_{\ell m}) (\delta^{i}_{k} y_{h} - \delta^{i}_{h} y_{k}).$$

Contracting the i and h in (2.14) and using (1.8), we get

$$(2.17) H_{jk!\ell!m} + \left\{ H_{kp}^{r} (\dot{\partial}_{j} \Gamma_{r\ell}^{*p}) - H_{r} (\dot{\partial}_{j} \Gamma_{k\ell}^{*r}) - H_{rk}^{p} (\dot{\partial}_{j} \Gamma_{p\ell}^{*r}) - H_{rk} P_{j\ell}^{r} \right\}_{lm} + \\ H_{kp!\ell}^{r} (\dot{\partial}_{j} \Gamma_{rm}^{*p}) - H_{r!\ell} (\dot{\partial}_{j} \Gamma_{km}^{*r}) - H_{rk!\ell}^{p} (\dot{\partial}_{j} \Gamma_{pm}^{*r}) - H_{k!r} (\dot{\partial}_{j} \Gamma_{m\ell}^{*r}) - \\ \left\{ H_{rk!\ell} + H_{kp}^{s} (\dot{\partial}_{r} \Gamma_{s\ell}^{*p}) - H_{s} (\dot{\partial}_{r} \Gamma_{k\ell}^{*s}) - H_{sk}^{p} (\dot{\partial}_{r} \Gamma_{p\ell}^{*s}) - H_{sk} P_{r\ell}^{s} \right\} P_{jm}^{r} \\ = (\dot{\partial}_{j} a_{\ell m}) H_{k} + a_{\ell m} H_{jk} + (1-n) (\dot{\partial}_{j} b_{\ell m}) y_{k} + (1-n) d_{\ell m} g_{jk}.$$

This shows that

(2.18) $H_{jk|\ell|m} = a_{\ell m} H_{jk} + (1-n) d_{\ell m} g_{jk}.$

if and only if

$$(2.19) \qquad \left\{ H_{kp}^{r} \left(\dot{\partial}_{j} \Gamma_{r\ell}^{*p} \right) - H_{r} \left(\dot{\partial}_{j} \Gamma_{k\ell}^{*r} \right) - H_{rk}^{p} \left(\dot{\partial}_{j} \Gamma_{p\ell}^{*r} \right) - H_{rk} P_{j\ell}^{r} \right\}_{|m} + \\ H_{kp|\ell}^{r} \left(\dot{\partial}_{j} \Gamma_{rm}^{*p} \right) - H_{r|\ell} \left(\dot{\partial}_{j} \Gamma_{km}^{*r} \right) - H_{p}^{p} \left(\dot{\partial}_{j} \Gamma_{pm}^{*r} \right) - H_{k|r} \left(\dot{\partial}_{j} \Gamma_{m\ell}^{*r} \right) - \\ \left\{ H_{rk|\ell} + H_{kp}^{s} \left(\dot{\partial}_{r} \Gamma_{s\ell}^{*p} \right) - H_{s} \left(\dot{\partial}_{r} \Gamma_{k\ell}^{*s} \right) - H_{sk}^{p} \left(\dot{\partial}_{r} \Gamma_{p\ell}^{*s} \right) - H_{sk} P_{r\ell}^{s} \right\} P_{jm}^{r}$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

Vol. 3, Issue 2, pp: (93-99), Month: October 2015 - March 2016, Available at: www.researchpublish.com

$$= (\dot{\partial}_j a_{\ell m}) H_k + (1-n) (\dot{\partial}_j b_{\ell m}) y_k .$$

Thus, we have

Theorem2.4. In $GR^h - BR - F_n$, Berwald curvature tensor H_{jkh}^i and Ricci curvature tensor H_{jk} are non-vanishing if and only if conditions (2.16) and (2.19) hold, respectively.

Differentiating (2.8) partially with respect to y^{j} , using (1.12) and (1.1b), we get

(2.20)
$$\hat{\partial}_{j}(H_{k|\ell|m}) = (\hat{\partial}_{j}a_{\ell m})H_{k} + a_{\ell m}H_{jk} + (1-n)(\hat{\partial}_{j}b_{\ell m})y_{k}$$
$$+ (1-n)b_{\ell m}g_{jk} .$$

Using the commutation formula exhibited by (1. 3a) for $(H_{k|\ell})$ and using (1.12), we get

(2.21)
$$(\dot{\partial}_{j}H_{k|\ell})_{|m} - H_{r|\ell}(\dot{\partial}_{j}\Gamma_{km}^{*r}) - H_{k|r}(\dot{\partial}_{j}\Gamma_{\ell m}^{*r}) - (\dot{\partial}_{r}H_{k|\ell})P_{jm}^{r}$$
$$= (\dot{\partial}_{j}a_{\ell m})H_{k} + a_{\ell m}H_{jk} + (1-n)(\dot{\partial}_{j}b_{\ell m})y_{k} + (1-n)b_{\ell m}g_{jk} .$$

Again using commutation formula exhibited by (1.3a) for (H_k) in (2.21), we get

$$(2.22) \qquad \left\{ (\dot{\partial}_{j}H_{k})_{|\ell} - H_{r}(\dot{\partial}_{j}\Gamma_{\ell k}^{*r}) - (\dot{\partial}_{r}H_{k})P_{j\ell}^{r} \right\}_{|m} - H_{r|\ell}(\dot{\partial}_{j}\Gamma_{km}^{*r}) \\ - H_{k|r}(\dot{\partial}_{j}\Gamma_{\ell m}^{*r}) - \left\{ (\dot{\partial}_{r}H_{k})_{|\ell} - H_{s}(\dot{\partial}_{r}\Gamma_{\ell k}^{*s}) - (\dot{\partial}_{s}H_{k})P_{r\ell}^{s} \right\}P_{jm}^{r} \\ = (\dot{\partial}_{j}a_{\ell m})H_{k} + a_{\ell m}H_{jk} + (1-n)(\dot{\partial}_{j}b_{\ell m})y_{k} + (1-n)b_{\ell m}g_{jk} + (1-n)b_$$

Using (1.12) and (2.18) in (2.22), we get

(2.23)
$$\left\{ -H_r (\dot{\partial}_j \Gamma_{\ell k}^{*r}) - (H_{kr}) P_{j\ell}^r \right\}_{lm} - H_{r l \ell} (\dot{\partial}_j \Gamma_{km}^{*r}) - H_{k l r} (\dot{\partial}_j \Gamma_{\ell m}^{*r}) - \left\{ H_{k r l \ell} - H_s (\dot{\partial}_r \Gamma_{\ell k}^{*s}) - H_{ks} P_{r \ell}^s \right\} P_{jm}^r = (\dot{\partial}_j a_{\ell m}) H_k + (1-n) (\dot{\partial}_j b_{\ell m}) y_k .$$

Transvecting (2.23) by y^k , using (1.1d), (1.13), (1.3b) and (1.1a), we get

$$-2H_{r\ell}P_{jm}^{r} - (n-1)H_{\ell}(\dot{\partial}_{j}\Gamma_{\ell m}^{*r}) = (n-1)(\dot{\partial}_{j}a_{\ell m})H - (n-1)(\dot{\partial}_{j}b_{\ell m})F^{2}$$

Which can be written as

(2.24)
$$(\dot{\partial}_j b_{\ell m}) = \frac{(\dot{\partial}_j a_{\ell m})H}{F^2}.$$

if and only if

(2.25)
$$2H_{r\ell}P_{im}^{r} + (n-1)H_{\ell}(\dot{\partial}_{i}\Gamma_{\ell m}^{*r}) = 0$$

If the tensor $a_{\ell m}$ is independent of y^i , the equation (2.24) shows that the tensor $b_{\ell m}$ is also independent of y^i . Conversely, if the tensor $b_{\ell m}$ is independent of y^i , we get $H\dot{\partial}_j a_{\ell m} = 0$. In view of theorem 2.3, the condition $H\dot{\partial}_j a_{\ell m} = 0$ implies $\dot{\partial}_j a_{\ell m} = 0$, i.e. the covariant tensor $a_{\ell m}$ is also independent of y^i . This leads to

Theorem 2.5. The covariant tensor $b_{\ell m}$ is independent of the directional arguments if the covariant tensor $a_{\ell m}$ is independent of directional arguments if and only if conditions (2.25) and (2.19) hold.

Suppose the tensor $a_{\ell m}$ is not independent of y^i , then (2.23) and (2.24) together imply

(2.26)
$$\left\{ -H_r \left(\dot{\partial}_j \Gamma_{\ell k}^{*r} \right) - (H_{kr}) P_{j\ell}^r \right\}_{lm} - H_{r \mid \ell} \left(\dot{\partial}_j \Gamma_{km}^{*r} \right) - H_{k \mid r} \left(\dot{\partial}_j \Gamma_{\ell m}^{*r} \right) - \left\{ H_{k r \mid \ell} - H_s \left(\dot{\partial}_r \Gamma_{\ell k}^{*s} \right) - H_{ks} P_{r\ell}^s \right\} P_{jm}^r = \left(\dot{\partial}_j a_{\ell m} \right) (H_k - \frac{(n-1)}{F^2} H y_k) .$$

Transvecting (2.26) by y^m and using (1.1d), (1.3c) and (1.3d), we get

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 3, Issue 2, pp: (93-99), Month: October 2015 - March 2016, Available at: <u>www.researchpublish.com</u>

(2.27)
$$\left\{-H_r\left(\dot{\partial}_j \Gamma_{\ell k}^{*r}\right) - (H_{kr})P_{j\ell}^r\right\}_{lm} y^m = \left(\dot{\partial}_j a_\ell - a_{j\ell}\right) (H_k - \frac{(n-1)}{F^2} H y_k).$$

where $a_{\ell m} y^m = a_{\ell}$

if

(2.28) $\left\{-H_r\left(\dot{\partial}_j \Gamma_{\ell k}^{*r}\right) - (H_{kr})P_{j\ell}^r\right\}_m y^m = 0, \text{ equation (2.27) implies at least one of the following conditions}$

(2.29) a)
$$a_{j\ell} = \dot{\partial}_j a_\ell$$
, b) $H_k = \frac{(n-1)}{F^2} H y_k$

Thus, we have

Theorem 2.6. In $GR^h - BR - F_n$ for which the covariant tensor $a_{\ell m}$ is not independent of the directional arguments and if conditions (2.28) and (2.19) (2.25) hold, at least one of the conditions (2.29a) and (2.29b) hold.

Suppose (2.29b) holds equation (2.26) implies

$$(2.30) \qquad \left\{ \frac{(n-1)}{F^2} H y_r \dot{\partial}_j \Gamma_{\ell k}^{*r} + H_{kr} P_{j\ell}^r \right\}_{|m} + \left\{ \frac{(n-1)}{F^2} H y_r \right\}_{|\ell} \dot{\partial}_j \Gamma_{km}^{*r} \\ + \left\{ \frac{(n-1)}{F^2} H y_k \right\}_{|r} \dot{\partial}_j \Gamma_{\ell m}^{*r} + H_{kr|\ell} P_{jm}^r + \frac{(n-1)}{F^2} H y_s (\dot{\partial}_r \Gamma_{\ell k}^{*s}) P_{jm}^r \\ + H_{ks} P_{r\ell}^s P_{jm}^r = 0 .$$

Transvecting (2.30) by y^j , using (1.1d), (1.3b) and (1.3d), we get

(2.31)
$$\left\{\frac{(n-1)}{F^2}Hy_r P_{\ell k}^r\right\}_{lm} + \left\{\frac{(n-1)}{F^2}Hy_r\right\}_{l\ell} P_{km}^r + \left\{\frac{(n-1)}{F^2}Hy_k\right\}_{lr} P_{\ell m}^r = 0.$$

Thus, we have

Theorem 2.7. In $GR^h - BR - F_n$, we have the identity (2.31) provided (2.29b).

Transvecting (2.31) by the metric tensor g_{rj} , using (1.1e) and (1.3e), we get

(2.32)
$$\left\{\frac{(n-1)}{F^2}Hy_rP_{j\ell k}\right\}_{lm} + \left\{\frac{(n-1)}{F^2}Hy_r\right\}_{l\ell}P_{jkm} + \left\{\frac{(n-1)}{F^2}Hy_k\right\}_{lr}P_{j\ell m} = 0$$

By using (1.1.c), equation (1.22) can be written as

 $y_r (HP_{j\ell k})_{|m} + y_r H_{|\ell} P_{jkm} + y_k H_{|r} P_{j\ell m} = 0 .$

In view of theorem2.3, we have

(2.33)
$$P_{j\ell m} = 0$$

if and only if

(2.34) $y_r(HP_{j\ell k})_{|m} + y_r H_{|\ell} P_{jkm} = 0$.

Therefore the space is Landsberg space.

Thus, we have

Theorem 2.8. An $GR^h - BR - F_n$ is Landsberg space if and only if conditions (2.34) and (2.29b) hold good.

If the covariant tensor $a_{j\ell} \neq \dot{\partial}_j a_{\ell}$, in view of theorem2.6, (2.29b) holds good. In view of this fact, we may rewrite theorem 2.8 in the following form

Theorem 2.9. An $GR^h - BR - F_n$ is necessarily Landsberg space if and only if conditions (2.34) and (2.29b) hold good and provided $a_{i\ell} \neq \dot{\partial}_i a_\ell$.

Using (2.15) in (2.14), we get

$$(2.35) \qquad \left\{ H_{kh}^{r} \left(\dot{\partial}_{j} \Gamma_{r\ell}^{*i} \right) - H_{rh}^{i} \left(\dot{\partial}_{j} \Gamma_{k\ell}^{*r} \right) - H_{rk}^{i} \left(\dot{\partial}_{j} \Gamma_{h\ell}^{*r} \right) - H_{rkh}^{i} P_{j\ell}^{r} \right\}_{m} \\ + H_{kh|\ell}^{r} \left(\dot{\partial}_{j} \Gamma_{rm}^{*i} \right) - H_{rh|\ell}^{i} \left(\dot{\partial}_{j} \Gamma_{km}^{*r} \right) - H_{rk|\ell}^{i} \left(\dot{\partial}_{j} \Gamma_{hm}^{*r} \right) - H_{kh|r}^{i} \left(\dot{\partial}_{j} \Gamma_{m\ell}^{*r} \right)$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 3, Issue 2, pp: (93-99), Month: October 2015 - March 2016, Available at: <u>www.researchpublish.com</u>

$$- \left\{ H^{i}_{rkhl\ell} + H^{s}_{kh} (\dot{\partial}_{r} \Gamma^{*i}_{s\ell}) - H^{i}_{sh} (\dot{\partial}_{r} \Gamma^{*s}_{k\ell}) - H^{i}_{sk} (\dot{\partial}_{r} \Gamma^{*s}_{h\ell}) - H^{i}_{skh} P^{s}_{r\ell} \right\} P^{r}_{jm}$$

$$= (\dot{\partial}_{j} a_{\ell m}) H^{i}_{kh} + (\dot{\partial}_{j} b_{\ell m}) (\delta^{i}_{k} y_{h} - \delta^{i}_{h} y_{k}).$$

Transvecting (2.35) by y^k , using (1.1d), (1.1a), (1.3b), (1.4) and (1.6), we get

$$(2.36) \qquad \left\{ H_h^r(\dot{\partial}_j \Gamma_{r\ell}^{*i}) - H_r^i(\dot{\partial}_j \Gamma_{h\ell}^{*r}) - 2H_{rh}^i P_{j\ell}^r \right\}_{lm} + H_{hl\ell}^r(\dot{\partial}_j \Gamma_{rm}^{*i}) - H_{rhl\ell}^i(P_{jm}^r) - H_{rl\ell}^i(\dot{\partial}_j \Gamma_{hm}^{*r}) - H_{hlr}^i(\dot{\partial}_j \Gamma_{m\ell}^{*r}) - \{H_{rhl\ell}^i + H_h^s(\dot{\partial}_r \Gamma_{s\ell}^{*i}) - H_s^i(\dot{\partial}_r \Gamma_{h\ell}^{*s}) - 2H_{sh}^i P_{r\ell}^s \} P_{jm}^r = (\partial_j a_{\ell m}) H_h^i + (\partial_j b_{\ell m}) (y^i y_h - \delta_h^i F^2) .$$

Substituting the value of $\dot{\partial}_i b_{\ell m}$ from (2. 24), in (2. 36), we get

$$(2.37) \qquad \left\{ H_h^r(\dot{\partial}_j \Gamma_{r\ell}^{*i}) - H_r^i(\dot{\partial}_j \Gamma_{h\ell}^{*r}) - 2H_{rh}^i P_{j\ell}^r \right\}_{lm} + H_{h_{l\ell}}^r(\dot{\partial}_j \Gamma_{rm}^{*i}) - H_{rh_{l\ell}}^i(\mathbb{P}_{jm}^r) \\ - H_{r_{l\ell}}^i(\dot{\partial}_j \Gamma_{hm}^{*r}) - H_{h_{lr}}^i(\dot{\partial}_j \Gamma_{m\ell}^{*r}) - \left\{ H_{rh_{l\ell}}^i + H_h^s(\dot{\partial}_r \Gamma_{s\ell}^{*i}) - H_s^i(\dot{\partial}_r \Gamma_{h\ell}^{*s}) \right\}$$

$$-2H_{sh}^i P_{r\ell}^s \} P_{jm}^r = (\dot{\partial}_j a_{\ell m}) [H_h^i - H(\delta_h^i - \lfloor^i \lfloor_h)].$$

if

$$(2.38) \qquad \left\{ H_{h}^{r} (\dot{\partial}_{j} \Gamma_{r\ell}^{*i}) - H_{r}^{i} (\dot{\partial}_{j} \Gamma_{h\ell}^{*r}) - 2H_{rh}^{i} P_{j\ell}^{r} \right\}_{im} + H_{h\ell}^{r} (\dot{\partial}_{j} \Gamma_{rm}^{*i}) - H_{rh\ell}^{i} (P_{jm}^{r}) \\ - H_{r\ell}^{i} (\dot{\partial}_{j} \Gamma_{hm}^{*r}) - H_{h\ell r}^{i} (\dot{\partial}_{j} \Gamma_{m\ell}^{*r}) - \{H_{rh\ell}^{i} + H_{h}^{s} (\dot{\partial}_{r} \Gamma_{s\ell}^{*i}) - H_{s}^{i} (\dot{\partial}_{r} \Gamma_{h\ell}^{*s}) - 2H_{sh}^{i} P_{r\ell}^{s}\} P_{jm}^{r} = 0$$

We have at least one of the following conditions :

(2.39) a)
$$\left(\partial_j a_{\ell m}\right) = 0$$
, b) $H_h^i = H\left(\delta_h^i - \lfloor^i \rfloor_h\right)$.

Putting $= F^2 R$, the equation (2. 39b) may be written as

(2.40)
$$H_h^i = F^2 R \left(\delta_h^i - \lfloor^i \rfloor_h \right),$$

where $R \neq 0$. Therefore the space is a Finsler space of scalar curvature .

Thus , we have

Theorem 2.10. An $GR^h - BR - F_n$ for n > 2 admitting equation (2.38) holds is a Finsler space of scalar curvature provided $R \neq 0$, the covariant tensor $a_{\ell m}$ is not independent of directional arguments and condition (2.16) holds.

REFERENCES

- [1] A.G. Walker. On Ruse's space of recurrent curvature, Proc. Land Math. Soc., 52, 1950, pp. 36-64.
- [2] A. Moór. Untersuchungen über Finslerränme von rekurrenter krümmung: Tensor N.S,13,1963, pp. 1-18.
- [3] F.Y.A .Qasem "On transformations in Finsler spaces." Ph.D. Thesis, University of Allahabad, 2000 .
- [4] H.S. Ruse. Three dimensional spaces of recurrent curvature: Proc. Lond. Math. Soc., 50, 1949, pp. 438-446.
- [5] P. N. Pandey." Some problems in Finsler spaces." D.Sc. Thesis, University of Allahabad, India ,1993.
- [6] P.N. Pandey, S. Saxena, and A. Goswani "On a Generalized H-Recurrent space", Journal of International Academy of physical Science, Vol. 15, pp. 201-211, 2011.
- [7] R. Verma "Some transformations in Finsler spaces." Ph.D. Thesis, University of Allahabad, ,India, 1991.
- [8] S. Dikshit "Certain types of recurrences in Finsler spaces." Ph.D. Thesis, University of Allahabad, 1992.
- [9] Y.C. Worg . Linear connections with zero torsion and recurrent curvature : Trans . Amer . Math. Soc ., 102 ,1962, pp.471 – 506.
- [10] Y.C.Worg and K. Yano. projectively flat spaces with recurrent curvature : Comment Math . Helv .,35 ,1961, pp. 223 232 .