On a Generalized $\boldsymbol{R}^{\boldsymbol{h}}$ - Birecurrent Finsler Space

${ }^{1}$ Fahmi Y.A. Qasem, ${ }^{2}$ Wafa`a H.A. Hadi
${ }^{1}$ Department of Mathematics, Faculty of Education-Aden, University of Aden, Khormaksar, Aden, Yemen
${ }^{2}$ Department of Mathematics, Community College, Dar Saad, Aden, Yemen

Abstract

In the present paper, a Finsler space whose curvature tensor $R_{j k h}^{i}$ satisfies $R_{j k h|\ell| m}^{i}=a_{\ell m} R_{j k h}^{i}+$ $b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right), R_{j k h}^{i} \neq 0$, where $a_{\ell m}$ and $b_{\ell m}$ are non-zero covariant tensor fields of second order called recurrence tensor fields, is introduced, such space is called as a generalized R^{h}-birecurrent Finsler space. The associate tensor $R_{j r k h}$ of Cartan's third curvature tensor $R_{j k h}^{i}$, the torsion tensor $H_{k h}^{i}$, the deviation tensor R_{h}^{i}, the Ricci tensor $R_{j k}$, the vector H_{k} and the scalar curvature R of such space are non-vanishing. Under certain conditions, a generalized R^{h}-birecurrent Finsler space becomes Landsberg space. Some conditions have been pointed out which reduce a generalized R^{h}-birecurrent Finsler space $F_{n}(n>2)$ into Finsler space of scalar curvature.

Keywords: Finsler space; Generalized $\boldsymbol{R}^{\boldsymbol{h}}$-birecurrent Finsler space; Ricci tensor; Landsberg space; Finsler space of scalar curvature.

1. INTRODUCTION

H.S. Ruse [4] considered a three dimensional Riemannian space having the recurrent of curvature tensor and he called such space as Riemannian space of recurrent curvature. This idea was extended to n-dimensional Riemannian and nonRiemannian space by A.G. Walker [1],Y.C. Worg [9] ,Y.C. Worg and K. Yano [10] and others .

This idea was extended to Finsler spaces by A.Moor [2] for the first time. Due to different connections of Finsler space, the recurrent of Cartan`s third curvature tensor \(R_{j k h}^{i}\) have been discussed by, R.Verma [7] , birecurrent of Cartan`s third curvature tensor $R_{j k h}^{i}$ have been discussed by S.Dikshit [8] and the generalized birecurrent of Cartan`s third curvature tensor $R_{j k h}^{i}$ have been discussed by F.Y.A.Qasem [3] .P.N.Pandey, S.Saxena and A.Goswami [6] interduced a generalized H-recurrent Finsler space.

Let F_{n} be An n-dimensional Finsler space equipped with the metric function a $F(x, y)$ satisfying the request conditions [4].
The vectors y_{i}, y^{i} and the metric tensor $\mathrm{g}_{i j}$ satisfies the following relations
a) $y_{i} y^{i}=F^{2}$
b) $\mathrm{g}_{i j}=\dot{\partial}_{i} y_{j}=\dot{\partial}_{j} y_{i}$
c) $y_{i \mid k}=0$
d) $y_{\mid k}^{i}=0$
e) $g_{i j \mid k}=0$
f) $g_{\mid k}^{i j}=0$.

Thus the unit vector l^{i} and the associate vector l_{i} is defined by
a) $l^{i}=\frac{y^{i}}{F}$
b) $l_{i}=\mathrm{g}_{i j} l^{j}=\dot{\partial}_{i} F=\frac{y_{i}}{F}$.

The two processes of covariant differentiation, defined above commute with the partial

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
a) $\dot{\partial}_{j}\left(X_{\mid k}^{i}\right)-\left(\dot{\partial}_{j} X^{i}\right)_{\mid k}=X^{r}\left(\dot{\partial}_{j} \Gamma_{r k}^{* i}\right)-\left(\dot{\partial}_{r} X^{i}\right) P_{j k}^{r}$,
b) $P_{j k}^{r}=\left(\dot{\partial}_{j} \Gamma_{h k}^{* r}\right) y^{h}=\Gamma_{j h k}^{* r} y^{h}$,
c) $\quad \Gamma_{j k h}^{* i} y^{h}=G \underset{j k h}{i} y^{h}=0$,
d) $\quad P_{j k}^{i} y^{j}=0$,
e) $\quad \mathrm{g}_{i r} P_{k h}^{i}=P_{r k h}$.

The tensor $H_{j k h}^{i}$ satisfies the relation

$$
\begin{align*}
& H_{j k h}^{i} y^{j}=H_{k h}^{i} . \tag{1.4}\\
& H_{j k h}^{i}=\dot{\partial}_{j} H_{k h}^{i} . \tag{1.5}
\end{align*}
$$

The torsion tensor $H_{k h}^{i}$ satisfies

$$
\begin{align*}
& H_{k h}^{i} y^{h}=H_{k}^{i}, \tag{1.6}\\
& R_{j k h}^{i} y^{j}=H_{k h}^{i}, \tag{1.7}\\
& H_{j k}=H_{j k i}^{i}, \tag{1.8}\\
& H_{k}=H_{k i}^{i}, \tag{1.9}
\end{align*}
$$

and

$$
\begin{equation*}
H=\frac{1}{n-1} H_{i}^{i} \tag{1.10}
\end{equation*}
$$

where $H_{j k}$ and H are called h-Ricci tensor [5] and curvature scalar respectively. Since contraction of the indices does not affect the homogeneity in y^{i}, hence the tensors $H_{r k}, H_{r}$ and the scalar H are also homogeneous of degree zero, one and two in y^{i} respectively. The above tensors are also connected by

$$
\begin{align*}
& H_{j k} y^{j}=H_{k} \tag{1.11}\\
& H_{j k}=\dot{\partial}_{j} H_{k} \tag{1.12}\\
& H_{k} y^{k}=(n-1) H \tag{1.13}
\end{align*}
$$

The tensors $H_{h}^{i}, H_{k h}^{i}$ and $H_{j k h}^{i}$ also satisfy the following :

$$
\begin{gather*}
H_{k h}^{i}=\dot{\partial}_{k} H_{h}^{i} \tag{1.14}\\
\mathrm{~g}_{i j} H_{k}^{i}=\mathrm{g}_{i k} H_{j}^{i} \tag{1.15}
\end{gather*}
$$

The associate tensor $R_{i j k h}$ of Catan`s third curvature tensor $R_{j k h}^{i}$ is given by

$$
\begin{equation*}
R_{i j k h}=\mathrm{g}_{r j} R_{i k h}^{r} . \tag{1.16}
\end{equation*}
$$

The necessary and sufficient condition for a Finsler space $F_{n}(n>2)$ to be a Finsler space of scalar curvature is given by

$$
\begin{equation*}
H_{h}^{i}=F^{2} R\left(\delta_{h}^{i}-l^{i} l_{h}\right) \tag{1.17}
\end{equation*}
$$

A Finsler space F_{n} is said to be Landsberg space if satisfies

$$
\begin{equation*}
y_{r} G_{j k h}^{r}=-2 C_{j k h \mid m} y^{m}=-2 P_{j k h}=0 . \tag{1.18}
\end{equation*}
$$

The Ricci tensor $R_{j k}$ of the curvature tensor $R_{j k h}^{i}$, the tensor R_{h}^{r} and the scalar R are given by
a) $\quad R_{j k i}^{i}=R_{j k}$,
b) $\quad R_{i k h}^{r} g^{i k}=R_{h}^{r}$,
c) $\quad \mathrm{g}^{j k} R_{j k}=R$.

2. GENERALIZED \boldsymbol{R}^{h}-BIRECURRENT FINSLER SPACE

Let us consider a Finsler space F_{n} whose Cartan's third curvature tensor $R_{j k h}^{i}$ satisfies

$$
\begin{equation*}
R_{j k h \mid \ell}^{i}=\lambda_{\ell} R_{j k h}^{i}+\mu_{\ell}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right), R_{j k h}^{i} \neq 0, \text { where } \lambda_{\ell} \text { and } \mu_{\ell} \text { are non-zero covariant vector fields and } \tag{2.1}
\end{equation*}
$$ called the recurrence vector fields. Such space called it as a generalized R^{h} - recurrent Finsler space.

Differentiating (2.1) covariantly with respect to x^{m} in the sense of Cartan and using (1.1.e), we get

$$
\begin{equation*}
R_{j k h|\ell| m}^{i}=\lambda_{\ell \mid m} R_{j k h}^{i}+\lambda_{\ell} H_{j k h \mid m}^{i}+\mu_{\ell \mid m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) \tag{2.2}
\end{equation*}
$$

Using (2.1) in (2.2) we get

$$
R_{j k h|\ell| m}^{i}=\left(\lambda_{\ell \mid m}+\lambda_{\ell} \lambda_{m}\right) R_{j k h}^{i}+\left(\lambda_{\ell} \mu_{m}+\mu_{\ell \mid m}\right)\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right),
$$

which can be written as

$$
\begin{equation*}
R_{j k h|\ell| m}^{i}=a_{\ell m} R_{j k h}^{i}+b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right), R_{j k h}^{i} \neq 0 \tag{2.3}
\end{equation*}
$$

Where $a_{\ell m}=\lambda_{\ell \mid m}+\lambda_{\ell} \lambda_{m}$ and $b_{\ell m}=\lambda_{\ell} \mu_{m}+\mu_{\ell \mid m}$ are non-zero covariant tensor fields of second order and called recurrence tensor fields.

Definition 2.1. If Cartan's third curvature tensor $R_{j k h}^{i}$ of a Finsler space satisfying the condition (2.3), where $a_{\ell m}$ and $b_{\ell m}$ are non-zero covariant tensor fields of second order, the space and the tensor will be called generalized $R^{h}-$ birecurrent Finsler space, we shall denote such space briefly by $G R^{h}-B R-F_{n}$.

However, if we start from condition (2.3), we cannot obtain the condition (2.1), we may conclude
Theorem 2.1. Every generalized R^{h} - recurrent Finsler space is generalized R^{h} - birecurrent Finsler space, but the converse need not be true.

Transvecting (2.3) by the metric tensor $g_{i r}$, using (1.1e) and (1.16), we get

$$
\begin{equation*}
R_{j r k h|\ell| m}=a_{\ell m} R_{j r k h}+b_{\ell m}\left(g_{k r} g_{j h}-g_{h r} g_{j k}\right) \tag{2.4}
\end{equation*}
$$

Transvecting (2.3) by y^{j}, using (1.1d) and (1.7) we get

$$
\begin{equation*}
H_{k h|\ell| m}^{i}=a_{\ell m} H_{k h}^{i}+b_{\ell m}\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) \tag{2.5}
\end{equation*}
$$

Further transvecting (2.5) by y^{k}, using (1.1d) and (1.6), we get

$$
\begin{equation*}
H_{h|\ell| m}^{i}=a_{\ell m} H_{h}^{i}+b_{\ell m}\left(y^{i} y_{h}-\delta_{h}^{i} F^{2}\right) \tag{2.6}
\end{equation*}
$$

Thus we have
Theorem 2.2. In $G R^{h}-B R-F_{n}$, the associate tensor $R_{j r k h}$ of Cartan's third curvature tensor $R_{j k h}^{i}$, the torsion tensor $H_{k h}^{i}$ and the deviation tensor H_{h}^{i} are non- vanishing.

Contracting the indices i and h in equations (2.3), (2.5) and (2.6), using (1.19a), (1.9), (1.10) and (1.1 a), we get

$$
\begin{align*}
& R_{j k|\ell| m}=a_{\ell m} R_{j k}+(1-n) b_{\ell m} g_{j k} . \tag{2.7}\\
& H_{k|\ell| m}=a_{\ell m} H_{k}+(1-n) b_{\ell m} y_{k} . \tag{2.8}\\
& H_{|\ell| m}=a_{\ell m} H-b_{\ell m} F^{2} . \tag{2.9}
\end{align*}
$$

Transvecting (2.3) and (2.7) by $g^{j k}$, using (1.1f), (1.19b) and (1.19c), we get

$$
\begin{align*}
& R_{h|\ell| m}^{i}=a_{\ell m} R_{h}^{i}+b_{\ell m}\left(y^{i} y_{h}-\delta_{h}^{i}\right) . \tag{2.10}\\
& R_{|\ell| m}=a_{\ell m} R+(1-n) b_{\ell m} . \tag{2.11}
\end{align*}
$$

Thus, we conclude

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 3, Issue 2, pp: (93-99), Month: October 2015 - March 2016, Available at: www.researchpublish.com

Theorem 2.3. In $G R^{h}-B R-F_{n}$, the Ricci tensor $R_{j k}$, the curvature vector H_{k}, the scalar curvature H the deviation tensor R_{h}^{i} and the scalar curvature tensor R are non- vanishing.

Differentiating (2.5) partially with respect to y^{j}, using (1.5) and (1.1b), we get

$$
\begin{align*}
& \dot{\partial}_{j}\left(H_{k h|\ell| m}^{i}\right)=\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k h}^{i}+a_{\ell m} H_{j k h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) \tag{2.12}\\
& +b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) .
\end{align*}
$$

Using commutation formula exhibited by (1.3b) for $\left(H_{k h \mid \ell}^{i}\right)$ in (2.12), we get

$$
\begin{align*}
& \left\{\dot{\partial}_{j}\left(H_{k h \mid \ell}^{i}\right)\right\}_{\mid m}+H_{k h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{r k \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right) \tag{2.13}\\
& -H_{k h \mid r}^{r}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* i}\right)-\dot{\partial}_{r}\left(H_{k h \mid \ell}^{i}\right) P_{j m}^{r}=\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k h}^{i} \\
& +a_{\ell m} H_{j k h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right)+b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) .
\end{align*}
$$

Again applying the commutation formula exhibited by (1.3a) for ($H_{k h}^{i}$) in (2.13) and using (1.5), we get

$$
\begin{align*}
& \left\{H_{j k h \mid \ell}^{i}+H_{k h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r h}^{i}\left(\dot{\partial}_{j} \Gamma_{k \ell}^{* r}\right)-H_{r k}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-H_{r k h}^{i} P_{j \ell}^{r}\right\}_{\mid m} \tag{2.14}\\
& \quad+H_{k h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{r k \mid \ell}^{i}\left(\dot{\partial}_{j}{ }_{h n}^{* r}\right)-H_{k h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)- \\
& \left\{H_{r k h \mid l}^{i}+H_{k h}^{s}\left(\dot{\partial}_{r} \Gamma_{s t}^{* i}\right)-H_{s h}^{i}\left(\dot{\partial}_{r} \Gamma_{k \ell}^{* s}\right)-H_{s k}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)-H_{s k h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k h}^{i}+a_{\ell m} H_{j k h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) \\
& \quad+b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) .
\end{align*}
$$

This shows that

$$
\begin{equation*}
H_{j k h|\mathscr{Y}| m}^{i}=a_{\ell m} H_{j k h}^{i}+b_{\ell m}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) \tag{2.15}
\end{equation*}
$$

if and only if

$$
\begin{align*}
& \left\{H_{k h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r h}^{i}\left(\dot{\partial}_{j} \Gamma_{k \ell}^{* r}\right)-H_{r k}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-H_{r k h}^{i} P_{j \ell}^{r}\right\}_{\mid m} \tag{2.16}\\
& +H_{k h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{r k \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{k h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right) \\
& -\left\{H_{r k h \mid \ell}^{i}+H_{k h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s h}^{i}\left(\dot{\partial}_{r} \Gamma_{k \ell}^{* s}\right)-H_{s k}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)-H_{s k h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) .
\end{align*}
$$

Contracting the i and h in (2.14) and using (1.8), we get

$$
\begin{align*}
& H_{j k|\ell| m}+\left\{H_{k p}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* p}\right)-H_{r}\left(\dot{\partial}_{j} \Gamma_{k \ell}^{* r}\right)-H_{r k}^{p}\left(\dot{\partial}_{j} \Gamma_{p \ell}^{* r}\right)-H_{r k} P_{j \ell}^{r}\right\}_{\mid m}+ \tag{2.17}\\
& H_{k p \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* p}\right)-H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{r k \mid \ell}^{p}\left(\dot{\partial}_{j} \Gamma_{p m}^{* r}\right)-H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)- \\
& \left\{H_{r k \mid \ell}+H_{k p}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* p}\right)-H_{s}\left(\dot{\partial}_{r} \Gamma_{k \ell}^{* s}\right)-H_{s k}^{p}\left(\dot{\partial}_{r} \Gamma_{p \ell}^{* s}\right)-H_{s k} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+a_{\ell m} H_{j k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k}+(1-n) d_{\ell m} g_{j k} .
\end{align*}
$$

This shows that

$$
\begin{equation*}
H_{j k|\ell| m}=a_{\ell m} H_{j k}+(1-n) d_{\ell m} g_{j k} . \tag{2.18}
\end{equation*}
$$

if and only if

$$
\begin{align*}
& \left\{H_{k p}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* p}\right)-H_{r}\left(\dot{\partial}_{j} \Gamma_{k \ell}^{* r}\right)-H_{r k}^{p}\left(\dot{\partial}_{j} \Gamma_{p \ell}^{* r}\right)-H_{r k} P_{j \ell}^{r}\right\}_{\mid m}+ \tag{2.19}\\
& H_{k p \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* p}\right)-H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{r k \mid \ell}^{p}\left(\dot{\partial}_{j} \Gamma_{p m}^{* r}\right)-H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)- \\
& \left\{H_{r k \mid \ell}+H_{k p}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* p}\right)-H_{s}\left(\dot{\partial}_{r} \Gamma_{k \ell}^{* s}\right)-H_{s k}^{p}\left(\dot{\partial}_{r} \Gamma_{p \ell}^{* s}\right)-H_{s k} P_{r \ell}^{s}\right\} P_{j m}^{r}
\end{align*}
$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

$$
=\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k} .
$$

Thus, we have
Theorem2.4. In $G R^{h}-B R-F_{n}$, Berwald curvature tensor $H_{j k h}^{i}$ and Ricci curvature tensor $H_{j k}$ are non- vanishing if and only if conditions (2.16) and (2.19) hold, respectively.

Differentiating (2.8) partially with respect to y^{j}, using (1.12) and (1.1b), we get

$$
\begin{align*}
& \dot{\partial}_{j}\left(H_{k|\ell| m}\right)=\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+a_{\ell m} H_{j k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k} \tag{2.20}\\
& +(1-n) b_{\ell m} g_{j k} .
\end{align*}
$$

Using the commutation formula exhibited by (1.3a) for $\left(H_{k \mid \ell}\right)$ and using (1.12), we get

$$
\begin{align*}
& \left(\dot{\partial}_{j} H_{k \mid \ell}\right)_{\mid m}-H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)-\left(\dot{\partial}_{r} H_{k \mid \ell}\right) P_{j m}^{r} \tag{2.21}\\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+a_{\ell m} H_{j k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k}+(1-n) b_{\ell m} g_{j k} .
\end{align*}
$$

Again using commutation formula exhibited by (1.3a) for $\left(H_{k}\right)$ in (2.21), we get

$$
\begin{align*}
& \left\{\left(\dot{\partial}_{j} H_{k}\right)_{\mid \ell}-H_{r}\left(\dot{\partial}_{j} \Gamma_{\ell \ell}^{* r}\right)-\left(\dot{\partial}_{r} H_{k}\right) P_{j \ell}^{r}\right\}_{\mid m}-H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right) \tag{2.22}\\
& -H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)-\left\{\left(\dot{\partial}_{r} H_{k}\right)_{\mid \ell}-H_{s}\left(\dot{\partial}_{r} \Gamma_{\ell k}^{* s}\right)-\left(\dot{\partial}_{s} H_{k}\right) P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+a_{\ell m} H_{j k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k}+(1-n) b_{\ell m} g_{j k}
\end{align*}
$$

Using (1.12) and (2.18) in (2.22), we get

$$
\begin{align*}
& \left\{-H_{r}\left(\dot{\partial}_{j} \Gamma_{\ell k}^{* r}\right)-\left(H_{k r}\right) P_{j \ell}^{r}\right\}_{\mid m}-H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right) \tag{2.23}\\
& -H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)-\left\{H_{k r_{l \ell}}-H_{s}\left(\dot{\partial}_{r} \Gamma_{\ell k}^{* s}\right)-H_{k s} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k}+(1-n)\left(\dot{\partial}_{j} b_{\ell m}\right) y_{k}
\end{align*}
$$

Transvecting (2.23) by y^{k}, using (1.1d), (1.13), (1.3b) and (1.1a), we get

$$
-2 H_{r \mid \ell} P_{j m}^{r}-(n-1) H_{\mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)=(n-1)\left(\dot{\partial}_{j} a_{\ell m}\right) H-(n-1)\left(\dot{\partial}_{j} b_{\ell m}\right) F^{2} .
$$

Which can be written as

$$
\begin{equation*}
\left(\dot{\partial}_{j} b_{\ell m}\right)=\frac{\left(\dot{\partial}_{j} a_{\ell m}\right) H}{F^{2}} \tag{2.24}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
2 H_{r \mid \ell} P_{j m}^{r}+(n-1) H_{\mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)=0 \tag{2.25}
\end{equation*}
$$

If the tensor $a_{\ell m}$ is independent of y^{i}, the equation (2.24) shows that the tensor $b_{\ell m}$ is also independent of y^{i}. Conversely , if the tensor $b_{\ell m}$ is independent of y^{i}, we get $H \dot{\partial}_{j} a_{\ell m}=0$. In view of theorem2.3, the condition $H \dot{\partial}_{j} a_{\ell m}=0$ implies $\dot{\partial}_{j} a_{\ell m}=0$, ,i.e. the covariant tensor $a_{\ell m}$ is also independent of y^{i}. This leads to

Theorem 2.5. The covariant tensor $b_{\ell m}$ is independent of the directional arguments if the covariant tensor $a_{\ell m}$ is independent of directional arguments if and only if conditions (2.25) and (2.19) hold.

Suppose the tensor $a_{\ell m}$ is not independent of y^{i}, then (2.23) and (2.24) together imply

$$
\begin{align*}
& \left\{-H_{r}\left(\dot{\partial}_{j} \Gamma_{\ell k}^{* r}\right)-\left(H_{k r}\right) P_{j \ell}^{r}\right\}_{\mid m}-H_{r \mid \ell}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right) \tag{2.26}\\
& -H_{k \mid r}\left(\dot{\partial}_{j} \Gamma_{\ell m}^{* r}\right)-\left\{H_{k r \mid \ell}-H_{s}\left(\dot{\partial}_{r} \Gamma_{\ell k}^{* s}\right)-H_{k s} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right)\left(H_{k}-\frac{(n-1)}{F^{2}} H y_{k}\right) .
\end{align*}
$$

Transvecting (2.26) by y^{m} and using (1.1d), (1.3c) and (1.3d), we get

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 3, Issue 2, pp: (93-99), Month: October 2015 - March 2016, Available at: www.researchpublish.com

$$
\begin{equation*}
\left\{-H_{r}\left(\dot{\partial}_{j} \Gamma_{\ell k}^{* r}\right)-\left(H_{k r}\right) P_{j \ell}^{r}\right\}_{\mid m} y^{m}=\left(\dot{\partial}_{j} a_{\ell}-a_{j \ell}\right)\left(H_{k}-\frac{(n-1)}{F^{2}} H y_{k}\right) . \tag{2.27}
\end{equation*}
$$

where $a_{\ell m} y^{m}=a_{\ell}$
if

$$
\begin{equation*}
\left\{-H_{r}\left(\dot{\partial}_{j} \Gamma_{\ell k}^{* r}\right)-\left(H_{k r}\right) P_{j \ell}^{r}\right\}_{\mid m} y^{m}=0 \text {, equation (2.27) implies at least one of the following conditions } \tag{2.28}
\end{equation*}
$$

a) $a_{j \ell}=\dot{\partial}_{j} a_{\ell}$,
b) $H_{k}=\frac{(n-1)}{F^{2}} H y_{k}$

Thus, we have
Theorem 2.6. In $G R^{h}-B R-F_{n}$ for which the covariant tensor $a_{\ell m}$ is not independent of the directional arguments and if conditions (2.28) and (2.19) (2.25) hold, at least one of the conditions (2.29a) and (2.29b) hold.

Suppose (2.29b) holds equation (2.26) implies

$$
\begin{align*}
& \left\{\frac{(n-1)}{F^{2}} H y_{r} \dot{\partial}_{j} \Gamma_{\ell k}^{* r}+H_{k r} P_{j \ell}^{r}\right\}_{\mid m}+\left\{\frac{(n-1)}{F^{2}} H y_{r}\right\}_{\mid \ell} \dot{\partial}_{j} \Gamma_{k m}^{* r} \tag{2.30}\\
& +\left\{\frac{(n-1)}{F^{2}} H y_{k}\right\}_{\mid r} \dot{\partial}_{j} \Gamma_{\ell m}^{* r}+H_{k r \mid \ell} P_{j m}^{r}+\frac{(n-1)}{F^{2}} H y_{s}\left(\dot{\partial}_{r} \Gamma_{\ell k}^{* s}\right) P_{j m}^{r} \\
& +H_{k s} P_{r \ell}^{s} P_{j m}^{r}=0 .
\end{align*}
$$

Transvecting (2.30) by y^{j}, using (1.1d), (1.3b) and (1.3d), we get

$$
\begin{equation*}
\left\{\frac{(n-1)}{F^{2}} H y_{r} \mathrm{P}_{\ell k}^{r}\right\}_{\mid m}+\left\{\frac{(n-1)}{F^{2}} H y_{r}\right\}_{\mid \ell} P_{k m}^{r}+\left\{\frac{(n-1)}{F^{2}} H y_{k}\right\}_{\mid r} \mathrm{P}_{\ell m}^{r}=0 \tag{2.31}
\end{equation*}
$$

Thus, we have
Theorem 2.7. In $G R^{h}-B R-F_{n}$, we have the identity (2.31) provided (2.29b).
Transvecting (2.31) by the metric tensor $g_{r j}$, using (1.1e) and (1.3e), we get

$$
\begin{equation*}
\left\{\frac{(n-1)}{F^{2}} H y_{r} P_{j \ell k}\right\}_{\mid m}+\left\{\frac{(n-1)}{F^{2}} H y_{r}\right\}_{\mid \ell} P_{j k m}+\left\{\frac{(n-1)}{F^{2}} H y_{k}\right\}_{\mid r} P_{j \ell m}=0 \tag{2.32}
\end{equation*}
$$

By using (1.1.c), equation (1.22) can be written as

$$
y_{r}\left(H P_{j \ell k}\right)_{\mid m}+y_{r} H_{\mid \ell} P_{j k m}+y_{k} H_{\mid r} P_{j \ell m}=0 .
$$

In view of theorem2.3, we have

$$
\begin{equation*}
P_{j \ell m}=0 . \tag{2.33}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
y_{r}\left(H P_{j \ell k}\right)_{\mid m}+y_{r} H_{\mid \ell} P_{j k m}=0 . \tag{2.34}
\end{equation*}
$$

Therefore the space is Landsberg space.
Thus, we have
Theorem 2.8. An $G R^{h}-B R-F_{n}$ is Landsberg space if and only if conditions (2.34) and (2.29b) hold good.
If the covariant tensor $a_{j \ell} \neq \dot{\partial}_{j} a_{\ell}$, in view of theorem2.6, (2.29b) holds good. In view of this fact, we may rewrite theorem 2.8 in the following form

Theorem 2.9. An $G R^{h}-B R-F_{n}$ is necessarily Landsberg space if and only if conditions (2.34) and (2.29b) hold good and provided $a_{j \ell} \neq \dot{\partial}_{j} a_{\ell}$.

Using (2.15) in (2.14), we get

$$
\begin{align*}
& \left\{H_{k h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r h}^{i}\left(\dot{\partial}_{j} \Gamma_{k \ell}^{* r}\right)-H_{r k}^{i}\left(\dot{\partial}_{j} \Gamma_{h t}^{* r}\right)-H_{r k h}^{i} P_{j t}^{r}\right\}_{\mid m} \tag{2.35}\\
& +H_{k h \mid t}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid t}^{i}\left(\dot{\partial}_{j} \Gamma_{k m}^{* r}\right)-H_{r k \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{k h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)
\end{align*}
$$

$$
\begin{aligned}
& -\left\{H_{r k h \mid \ell}^{i}+H_{k h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s h}^{i}\left(\dot{\partial}_{r} \Gamma_{k \ell}^{* s}\right)-H_{s k}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)-H_{s k h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r} \\
& =\left(\dot{\partial}_{j} a_{\ell m}\right) H_{k h}^{i}+\left(\dot{\partial}_{j} b_{\ell m}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right)
\end{aligned}
$$

Transvecting (2.35) by y^{k}, using (1.1d), (1.1a), (1.3b), (1.4) and (1.6), we get

$$
\begin{align*}
& \left\{H_{h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-2 H_{r h}^{i} P_{j \ell}^{r}\right\}_{\mid m}+H_{h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\mathrm{P}_{j m}^{r}\right) \tag{2.36}\\
& -H_{r \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)-\left\{H_{r h \mid \ell}^{i}+H_{h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)\right. \\
& \left.-2 H_{s h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r}=\left(\partial_{j} a_{\ell m}\right) H_{h}^{i}+\left(\partial_{j} b_{\ell m}\right)\left(y^{i} y_{h}-\delta_{h}^{i} F^{2}\right) .
\end{align*}
$$

Substituting the value of $\dot{\partial}_{j} b_{\ell m}$ from (2.24), in (2.36), we get

$$
\begin{align*}
&\left\{H_{h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-2 H_{r h}^{i} P_{j \ell}^{r}\right\}_{\mid m}+ H_{h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\mathrm{P}_{j m}^{r}\right) \tag{2.37}\\
&-H_{r \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)-\left\{H_{r h \mid \ell}^{i}+H_{h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)\right. \\
&\left.-2 H_{s h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r}=\left(\dot{\partial}_{j} a_{\ell m}\right)\left[H_{h}^{i}-H\left(\delta_{h}^{i}-l^{i} l_{h}\right)\right] .
\end{align*}
$$

if

$$
\begin{align*}
& \left\{H_{h}^{r}\left(\dot{\partial}_{j} \Gamma_{r \ell}^{* i}\right)-H_{r}^{i}\left(\dot{\partial}_{j} \Gamma_{h \ell}^{* r}\right)-2 H_{r h}^{i} P_{j \ell}^{r}\right\}_{\mid m}+H_{h \mid \ell}^{r}\left(\dot{\partial}_{j} \Gamma_{r m}^{* i}\right)-H_{r h \mid \ell}^{i}\left(\mathrm{P}_{j m}^{r}\right) \tag{2.38}\\
& \quad-H_{r \mid \ell}^{i}\left(\dot{\partial}_{j} \Gamma_{h m}^{* r}\right)-H_{h \mid r}^{i}\left(\dot{\partial}_{j} \Gamma_{m \ell}^{* r}\right)-\left\{H_{r h \mid \ell}^{i}+H_{h}^{s}\left(\dot{\partial}_{r} \Gamma_{s \ell}^{* i}\right)-H_{s}^{i}\left(\dot{\partial}_{r} \Gamma_{h \ell}^{* s}\right)-2 H_{s h}^{i} P_{r \ell}^{s}\right\} P_{j m}^{r}=0 .
\end{align*}
$$

We have at least one of the following conditions :
a) $\left(\dot{\partial}_{j} a_{\ell m}\right)=0$,
b) $H_{h}^{i}=H\left(\delta_{h}^{i}-l^{i} l_{h}\right)$.

Putting $=F^{2} R$, the equation (2.39b) may be written as

$$
\begin{equation*}
H_{h}^{i}=F^{2} R\left(\delta_{h}^{i}-l^{i} l_{h}\right), \tag{2.40}
\end{equation*}
$$

where $R \neq 0$. Therefore the space is a Finsler space of scalar curvature .
Thus, we have
Theorem 2.10. An $G R^{h}-B R-F_{n}$ for $n>2$ admitting equation (2.38) holds is a Finsler space of scalar curvature provided $R \neq 0$, the covariant tensor $a_{\ell m}$ is not independent of directional arguments and condition (2.16) holds.

REFERENCES

[1] A.G. Walker. On Ruse's space of recurrent curvature, Proc. Land Math. Soc., 52 , 1950,pp. 36-64.
[2] A. Moór. Untersuchungen über Finslerränme von rekurrenter krümmung: Tensor N.S,13,1963,pp. 1-18.
[3] F.Y.A .Qasem "On transformations in Finsler spaces." Ph.D. Thesis, University of Allahabad, 2000 .
[4] H.S .Ruse. Three dimensional spaces of recurrent curvature: Proc. Lond. Math. Soc., 50, 1949,pp. 438-446.
[5] P. N. Pandey." Some problems in Finsler spaces." D.Sc. Thesis, University of Allahabad, India ,1993.
[6] P.N. Pandey, S. Saxena, and A. Goswani "On a Generalized H-Recurrent space", Journal of International Academy of physical Science, Vol. 15, pp. 201-211, 2011.
[7] R. Verma "Some transformations in Finsler spaces." Ph.D. Thesis, University of Allahabad, ,India, 1991.
[8] S. Dikshit "Certain types of recurrences in Finsler spaces." Ph.D. Thesis, University of Allahabad, 1992.
[9] Y .C. Worg . Linear connections with zero torsion and recurrent curvature : Trans . Amer . Math. Soc ., 102 ,1962, pp. 471 - 506.
[10] Y .C .Worg and K. Yano. projectively flat spaces with recurrent curvature : Comment Math . Helv ., 35 , 1961, pp. 223-232.

