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Abstract: In the present paper, a Finsler space whose curvature tensor Rj, satisfies Rjkhlt’lm = amRju, +

bem(83.9in — 849ji) , Riyn # 0, Where ay, and by, are non-zero covariant tensor fields of second order called
recurrence tensor fields, is introduced, such space is called as a generalized R" —birecurrent Finsler space . The
associate tensor Rj,, of Cartan's third curvature tensor R]‘ikh , the torsion tensor H:, ,the deviation tensor R:, the
Ricci tensor Rjy, the vector Hy and the scalar curvature R of such space are non-vanishing. Under certain
conditions, a generalized R® —birecurrent Finsler space becomes Landsberg space . Some conditions have been

pointed out which reduce a generalized R"® —birecurrent Finsler space F,(n > 2) into Finsler space of scalar
curvature.
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1. INTRODUCTION

H.S. Ruse [4] considered a three dimensional Riemannian space having the recurrent of curvature tensor and he called
such space as Riemannian space of recurrent curvature. This idea was extended to n-dimensional Riemannian and non-
Riemannian space by A.G. Walker [1],Y.C. Worg [9] ,Y.C. Worg and K. Yano [10] and others .

This idea was extended to Finsler spaces by A.Moor [2] for the first time . Due to different connections of Finsler space,
the recurrent of Cartan’s third curvature tensor R}kh have been discussed by, R.Verma [7] , birecurrent of Cartan’s third

curvature tensor R}'kh have been discussed by S.Dikshit [8] and the generalized birecurrent of Cartan’s third curvature
tensor R}'kh have been discussed by F.Y.A.Qasem [3] .P.N.Pandey, S.Saxena and A.Goswami [6] interduced a generalized
H-recurrent Finsler space.

Let E, be An n-dimensional Finsler space equipped with the metric function a F(x, y) satisfying the request conditions

[4] .

The vectors y; , y‘and the metric tensor g;; satisfies the following relations

(1L1) a) yy'=F? b) g;= 0y; = 0y ¢) Yik=0
d) yi=0 &) gyx=10  gu=

Thus the unit vector |?and the associate vector [; is defined by

12) @) U'=2  b) L=gyl =4F=2

i
F F '

The two processes of covariant differentiation, defined above commute with the partial
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(1.3) ) 0;(Xj) —(9x7), = X"(3T%) — (X ) P,

b) Pl= (9l )y" = T v,

c) F;’;.chyth}l:khyhzor
d) Piyl =0,
e) giTPkichPrkh'

The tensor Hjikh satisfies the relation
(1.4) H}khyszlih-

The torsion tensor H |, satisfies

(1.6) Hipy"™ = Hy,
(1.7) R]i'kh yj =Hlih )
(1.8) Hj = H]l:ki )
(1.9) He= Hjy,

and

(1.10) H =— H}.

where H j, and H are called h-Ricci tensor [5] and curvature scalar respectively. Since contraction of the indices does not
affect the homogeneity in y?, hence the tensors H,, , H, and the scalar H are also homogeneous of degree zero, one and
two in y*® respectively . The above tensors are also connected by

(1.11) Hjy =Hy,
(1.12) Hj =0;H,,
(1.13) Hyy* =m-1H.
The tensors Hj, , H,and H }, also satisfy the following :
(1.14) Hi,=0.HL,
(1.15) giiHi=guH}.
The associate tensor R ;;,, of Catan's third curvature tensor Rj-kh is given by
(1.16) Rijkn = 8+j Rixn -
The necessary and sufficient condition for a Finsler space F,(n > 2) to be a Finsler space of scalar curvature is given by
(1.17) H, =F?R(8L— 1"1n) -
A Finsler space F, is said to be Landsberg space if satisfies
(1.18) yrG}?;ch = _ZCjkhlmym = —2Py,, = 0.
The Ricci tensor Ry, of the curvature tensor Rj-kh , the tensor R}, and the scalar R are given by
(1.19) a)  Rj =R
b)  Rhng™ =R},
0 g*Rj=R.
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2. GENERALIZED R" —BIRECURRENT FINSLER SPACE

Let us consider a Finsler space F, whose Cartan's third curvature tensor R}'kh satisfies
(2.1) R;khlf =AeR}xn + 1e( 8k gjn — 64 Gji) » Riyn # 0, where 2, and p, are non-zero covariant vector fields and
called the recurrence vector fields. Such space called it as a generalized R"- recurrent Finsler space.
Differentiating (2.1) covariantly with respect to x™ in the sense of Cartan and using (1.1.e), we get
(22) Rinom = AemBhn + AeHjpm + Hown (5% 9jn = 81 9jx).
Using (2.1) in (2.2) we get

Rjkmﬂm =(Apm + Ao ﬂm)R}kh + (At + ton) Bk Gjn — 81 9jic),
which can be written as
(2.3) R]I':kh|[|m = amRfin + bom( 8k gjn — 6k Gjic ) Rjn # 0,

Where apy, = 4
called recurrence tensor fields.

sm T Ao Ay and by, = Apuy, + Uy, are non-zero covariant tensor fields of second order and

Definition 2.1. If Cartan’s third curvature tensor R}kh of a Finsler space satisfying the condition (2.3), where a,,, and

b, are non-zero covariant tensor fields of second order , the space and the tensor will be called generalized R* —
birecurrent Finsler space, we shall denote such space briefly by GR® — BR — E, .

However, if we start from condition (2.3), we cannot obtain the condition (2.1), we may conclude

Theorem 2.1. Every generalized R™ — recurrent Finsler space is generalized R"™ — birecurrent Finsler space, but the
converse need not be true.

Transvecting (2.3) by the metric tensor g, , using (1.1e) and (1.16) ,we get
(2.4) Rirkniem = GemRjrkn + bem (Grr 9jn — Gnr jic)-

Transvecting (2.3) by y/ , using (1.1d) and (1.7) we get

(25)  Hyppm = GemHin + bem(8iyn — 8h3).

Further transvecting (2.5) by y* , using (1.1d) and (1.6), we get

2.6)  Hy . = auHh + e Yy — SLF?)

Thus we have

Theorem 2.2. In GR"® — BR — F, ,the associate tensor Rjyin Of Cartan's third curvature tensor R}kh , the torsion tensor
Hl, and the deviation tensor H}. are non- vanishing.

Contracting the indices i and h in equations (2.3), (2.5) and (2.6) , using (1.19a), (1.9), (1.10) and (1.1 a), we get
2.7 R]-,(H,Im = ARy + a- n)b[mg}-k .

(2.8) Hyom = @emHr + (1 —1)bpp, vy -

(2.9) H pm = QomH — by F? .

Transvecting (2.3) and (2.7) by g’* , using (1.1f) , (1.19b) and (1.19c), we get

(2.10) R! o = @Ry + by (¥'yy — 6L) .

(2.11) R apmR + (1 = 1) by .

m =

Thus, we conclude

Page | 95
Research Publish Journals



http://www.researchpublish.com/

International Journal of Mathematics and Physical Sciences Research [1SSN 2348-5736 (Online)
Vol. 3, Issue 2, pp: (93-99), Month: October 2015 - March 2016, Available at: www.researchpublish.com

Theorem 2.3. In GR" — BR — F, ,the Ricci tensor Rji, the curvature vector H, ,the scalar curvature H the deviation
tensor R}, and the scalar curvature tensor R are non- vanishing.

Differentiating (2.5) partially with respect to y/ , using (1.5) and (1.1b), we get

(2.12) 0; (H;{mmm) = (0;apm)Hin + AomHjin + (0;bem) (Bkyn — 1Y)
+b{’m(51igjh - 5;.1ij)-

Using commutation formula exhibited by (1.3b) for (H;W) in (2.12), we get

(2.13) (3 (o)} + Hino(0150) = Hiy (0Ti0) = Hiy, (6T

khlr(a 2) = 0r ( khw) = (0;aem)Hin
+a€mHjikh + (ajbfm)(aliyh - 5;'1}%) + b!m(éligjh - 6iilgjk)-
Again applying the commutation formula exhibited by (1.3a) for (H%,) in (2.13) and using (1.5), we get
(2.14) {Hl e + Hin(0T78) = Hin(915) — Hi(9,T37) = Hi T}
+Hrh|£’(a F;rln) hw(a ) km(a.jFan - khlr(a t’)
{H;khlf’ + Hin(0,T54) — Hin(0,T2) — Heye(9:T32) — Hakn }
= (0japm)Hin + ai’mHjikh + (0;bem) (Bkyn — Shyx)

+byn (8kgjn — 619 k) -
This shows that

(2.15) H;kmﬂm AemHfin + bem (85 9jn — Srgjic)-

if and only if

(2.16) (i (9,572) = Hpn(9Ti7) — Hic(9Th7) — Hrin P2}
+Hrh|€(a Fr*rln) hw(a ) kw(a - khlr(a

—{H. e + HEn (9,138) = Hin(8,175) — H (3,158) — i fe}Pﬁn

= (0;am)Hin*(01bom) (8kyn — Shvic)-
Contracting the i and h in (2.14) and using (1.8), we get

(2.17) ijlf’lm + {Hl:p (a‘,-r;‘;’) - Hr(ajrl:;) - ka (@'FS?) - Hrkpjz’}lm +
H;plf(a F*p) Hrw(a ) kw(a rrn) Hklr(a.jrrm’
{Hrkw + Hlip(a F*p) H, (6 F ) (ar pf’) HskP:f}F)J'rrn

= (0japm)Hy + apmHj + (1 = n)(0;bem)vi + (1 = W) d -
This shows that

(2.18) Hiom = QemHj + A = 1)dpm g

if and only if

(2.19) {Hp, (0;177) — H.(9;Ty7) — HE (0,157 ) — HrkPjQ,}lm +
Hiep o(0jTm) = Hro (i) = Hp,p (0Tm) = Hier (0)T) —
{Hyie + Hiep (:T7) = He(9:T2) — H3y (3,T57) — HerePre} P
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= (a'ja[m)Hk + (1 - n)(ajbfm)yk :
Thus , we have

Theorem2.4. In GR™ — BR — E, , Berwald curvature tensor Hj"kh and Ricci curvature tensor Hj, are non- vanishing if and
only if conditions (2.16) and (2.19) hold, respectively.

Differentiating (2.8) partially with respect to y/, using (1. 12) and (1.1b), we get
(220) 6j(Hk|€|m) = (3ja[m)Hk + agmij + (1 - n)(ajbgm)yk
+(1 = 1)bem gji -
Using the commutation formula exhibited by (1. 3a) for (H,,,) and using (1.12), we get
(221) (aij|€)|m - Hrlf(éjrlgn) - Hk|r(ajF;r7;L) - (aTHkM)P]?;n
= (0japm)Hy + apmHy + (1 = 1)(9;bem)yic + (1 = WbpmGjic
Again using commutation formula exhibited by (1.3a) for (H) in (2.21) , we get
(2.22) (@ HO = H (T37) = @ HOPR) = Hoo(9iTim,
~Hyy (i) = {@rHi) o = Hs(0,T7i) = (O Hi) PP
= (jamm)He +  ammHjc + (1= 1) (0jbem)yic + (1 = n)bemijc -
Using (1.12) and (2.18) in (2.22), we get
(2.23) {=H(OTsk) — ()P} — Hyo(0Tim
_Hk|r(ajl—‘;r7;1 - {Hkrw - Hs(a.rr‘;li) - HksPrsf’} P]:n
= (0jaem)Hy + (1 = 1) (9;bgm) i -
Transvecting (2.23) by y* , using (1.1d), (1.13) , (1.3b) and (1.1a), we get
—2H,,,Ph, — (n — DH,.(9;T5m) = (n — 1)(0;apm)H — (n — 1)(0;bpm ) F2.

Which can be written as

. diapm)H
(228)  (Fbpn) =
if and only if
(2.25) 2H,,,Ph, + (n— DH,.(9;T;7) =0.

If the tensor a,,, is independent of y*, the equation (2.24) shows that the tensor by, is also independent of y*. Conversely
, if the tensor by, is independent of y*, we get Ha'ja[m = 0 . In view of theorem2.3, the condition Héja{m = 0 implies
éjam = 0, ,i.e. the covariant tensor a,,, is also independent of y*. This leads to

Theorem 2.5. The covariant tensor b,,, is independent of the directional arguments if the covariant tensor a,,, is
independent of directional arguments if and only if conditions (2.25) and (2.19) hold.

Suppose the tensor a,,, is not independent of y*, then (2.23) and (2.24) together imply
(2.26) {_Hr(ajF;I: - (Hkr)PjQ}lm - Hﬂ[(a}-r}::n
_Hmr(ajr;;m) - {Hkm’ - Hs(a'rr;,g) - HksPrS{’}Pjrm

(n-1)

= (0japm ) (Hy — —z Hyi) -

Transvecting (2.26) by y™ and using (1.1d) , (1.3c) and (1.3d), we get
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(227) {(=H,(8T%) = (Hi)PR} y™ = (800 — aje) (Hie =2 Hy).

where a,;,y™ = a,

if
(2.28) {-H,.(0,T;7) — (HkT)Pj';,}Imym = 0, equation (2.27) implies at least one of the following conditions
(2.29) a) a;, = 9;ay, b) H = (’%DHJ'R

Thus, we have

Theorem 2.6. In GR™ — BR — F,, for which the covariant tensor a,,, is not independent of the directional arguments and
if conditions (2.28) and (2.19) (2.25) hold, at least one of the conditions (2.29a) and (2.29b) hold.

Suppose (2.29b) holds equation (2.26) implies
(n—-1) 3 (n—-1) ) T
(2.30) {F— Hy,d,T;0 + Hyer ].;,}lm + {F— Hyr}w ;T

(n—1) 3 * ( _1) 3 *
+{ npz Hyk}w aij:l + Hkrh{’PjT;n + Z—ZHys(arF{’lg)PjT;n

+ HysPpPim = 0.
Transvecting (2.30) by y/ , using (1.1d), (1.3b) and (1.3d), we get
(n-1) r (n-1) (n-1) ro_
@3)  (ZRayri) +(T2mHy) P+ (S22 R =0,
Thus, we have

Theorem 2.7. In GR™ — BR — F, , we have the identity (2.31) provided (2.29b).
Transvecting (2.31) by the metric tensor g,.; , using (1.1e) and (1.3e), we get

€@ R, + () pan +E2) B0

Im 12

By using (1.1.c) , equation (1.22) can be written as
Vr(HPipi) i + YrH pPikcm + YicH  Pigm = 0.

In view of theorem2.3 , we have

(2. 33) Piym =0.
if and only if
(2-34) yr(Hlek)ml + yerijm =0.

Therefore the space is Landsberg space.
Thus, we have
Theorem 2.8. An GR" — BR — E, is Landsberg space if and only if conditions (2.34) and (2.29b) hold good.

If the covariant tensor a;, # ajag, in view of theorem2.6, (2.29b) holds good. In view of this fact, we may rewrite
theorem 2.8 in the following form

Theorem 2.9. An GR" — BR — E, is necessarily Landsberg space if and only if conditions (2.34) and (2.29b) hold good
and provided a;, # 9;a, .

Using (2.15) in (2.14), we get
(2.35) {Hin(0172) — Hen(0iTi7) — Hrc(OT07) — Hrin P},
+H1:h|€(a.]'r‘;7§1) - Hrihw(a.jrlzrrn) - Hrikw(a.jrﬁrrn - Hlimr(a.jrr*nrf
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{H;khu’ + Hlih (arrs*;) - Hsih(érl";f,) - Hsik (ar ) Hslkh }
= (0jam)Hicn + (0bem) (Sicyn — Shv)-
Transvecting (2.35) by y* , using (1.1d), (1.1a), (1.3b), (1.4) and (1.6), we get

(2.36) {Hy (9;T3}) — HL(9;Typ) — 2HL, P, {,} +Hy (0;17) — HY,,,(Ph)

Hril{’(afrft:n - hlr(a ) { rhi€ + Hfsl (aTFS*;) - Hé(arrh;

—2H%, PS = (0;aem)Hh + (0;bem) (y'yn — 64F? ) .
Substituting the value of a,.b[m from (2. 24) , in (2. 36), we get
(2.37) {H(9;T7}) — HL(9;Typ) — 2HL, P, {,} +Hy (8;17%) — HL,, ,(PT,)

H:;I{’(a.]'l—‘;:?rn - hlr(a ) { rhif + Hfsl (aTFS?) - HSi (6TFh;
—2HYPEYP, = (8aem)[Hh — H(8 —1'1a)].
if
(2.38) {HE(9;177) = HE(9;Thp) — 2HnPle}  + Hyo(0,T0) = Hyyy(Pl)
Hrim(ajrﬁrrn - hlr(a t’) { rhie T Hﬁ(érl“s*{f) - Hsi(éngj) - ZHsihPrSt’}Pﬁn =0.

We have at least one of the following conditions :
(2.39) a) (9;amm) =0, b) H = H(8; —1'n).

Putting = F2R , the equation (2. 39b) may be written as

(2.40) Hy = F2R(8} = 1'ln)

where R # 0. Therefore the space is a Finsler space of scalar curvature .

Thus , we have

Theorem 2.10. An GR" — BR — E, for n >2 admitting equation (2.38) holds is a Finsler space of scalar curvature
provided R # 0, the covariant tensor a,,,, is not independent of directional arguments and condition (2.16) holds.
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